Current Trends in Core Strength and Stability Training Michael Tse, PhD, CSCS Institute of Human Performance Active Health Clinic The University of Hong Kong ### Copyright disclosure Images and graphics in this presentation, some of which are from the internet, are for educational purposes only and not for reproduction or sale. ### CORE: new or old? ### Core muscle classifications | Deep cervical flexors | Property of the Comment ## Primary Core muscles (A) thoracic erector spinae, (B) lumbar erector spinae, (C) latissimus dorsi, (D) internal oblique, (E) external oblique, (F) rectus abdominis, (G) transversus abdominis, and (H) rectus femoris. | Ref | Hypothesis / Aim | Subjects | Training program -
Type | Results | |--|---|---|---|---| | Sato et al (JSCR,
2009) | Investigate the effect of CS
training on GRP, stability, overall
running performance | 28 rec runners (male
and female)
- CS group (14)
- Control (14) | 6 weeks; 4x / week
(unsupervised, home
training) | No significant difference in GRF or SE
scores. Sig. improvement in 5km run ti
TG = 29:29 (pre), 28:42 (post) [n=12];
26:30 (pre), 26:13 (post) [n=8] | | Butcher et al
(JOSPT, 2007) | Investigate the effect of CS
training, leg strength (LS)
training, and a combination (CS-
LS) on vertical jump | 66 athletes (male and
female)
- CS group
- Leg strength (LS)
- Combination (CS-LS)
- Control group | 9 weeks; 3x / week
(unsupervised) | After third week CS group only had
significant improvement in vertical jum
After ninth week all groups had signific
improvement compared to control | | Mills et al.
(Phys Ther Sport,
2005) | Establish effect of training on
lumbopelvic stability and running
performance | 30 athletes (female) - Treatment group - Pseudo-treatment - Control group | 10 weeks; 4x /week (1
supervised plus 3
unsupervised) - | Significant improvement in lumbopelvi
stability plus significant effects on verti
jump, agility, and balance. | | Tse et al. (JSCR,
2005) | Validate a CS training program
and relate it to performance
parameters of power, speed,
agility, and aerobic power | 45 college age
rowers
(male)
- Treatment group
- Control group | 8 weeks; 2x / week
(supervised) | Significant improvements in core endur
of training group, but no effect of CS
program on performance aspects | | Stanton et al.
(JSCR, 2005) | Investigate the effect of Swiss
ball training on CS and running
economy | 22 athletes (male) - Treatment group - Control group | 6 weeks; 2x / week
(supervised) – Swiss
ball only | Significant effect of Swiss ball training
CS. No related differences in back and
abdominal EMG, nor on running econo | | Cosio-Lima et al.
(JSCR, 2003) | Examine effect of Swiss ball
(CS) training on abdominal and
back isokinetic measures and
balance | 30 students (female) - Treatment group - Control group | 5 weeks; 5x /week for
15min (semi-
supervised) – Swiss
ball only | Significantly higher EMG activity and
improvements on balance test. No signi
differences between groups for leg and
strength tests. | # Core's role in sport Core's role in sport Core's role in sport ### Core's role in sport