

Evaluation and Feedback in Swimming Historical Overview

Bruce Mason
Australian Institute of Sport
Hong Kong Sports Institute – Invited Lecture – July 2011

Introduction

- " Aquatic Biomechanics has difficulty obtaining good objective and quantifiable data.
- "Problem to obtain quality kinematic analysis. (poor image resolution splashes & bubbles)
- " Problem to obtain quality Kinetic analysis. (unable to use force transducers)
- "Therefore servicing & feedback often relied upon underwater video & subjective evaluation.

The Early 1970's

- " Lift Versus Drag propulsion.
- " Lift Propulsion theory dominated at this time.
- "A biomechanist in servicing would identify and encourage lateral movement of the hand in support of lift propulsion being dominant.
- This was an era in which swim flumes were evolving that would assist in the servicing and feedback to swimmers.

Mid 1970's to Mid 1980's

- Active Drag and Propulsion was evaluated.
- Intra Stroke Velocity variation was evaluated using video.
- "Better video techniques evolved. (combined above/below water image of swimmer)
- Competition race analysis evolved. (Rein Haljand from Estonia)

The Wave Trough

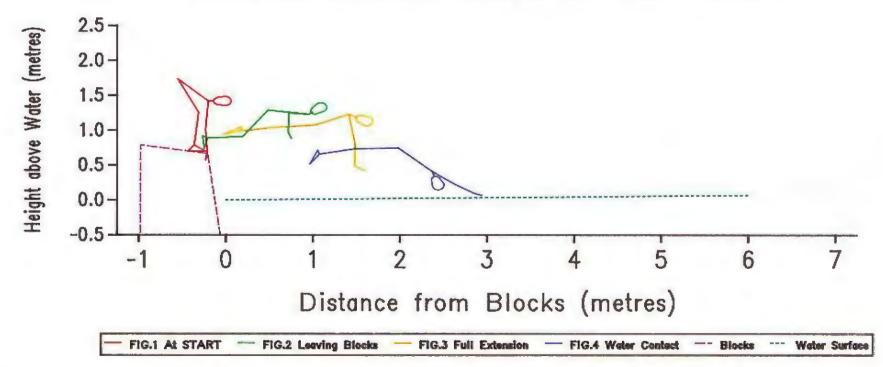
- " Alex Popov 1.8m/s
- " Alex Popov 2.1m/s

" Alex Popov 2.5m/s

Mid 1980's to Early 1990's

- "Linear Accelerometry to investigate and reduce intra stroke velocity fluctuations.
- "Starts and Turns investigated with video.
- " MAD system for active drag analysis evolved.
- "Large race analysis systems evolved (Canada, Australia & Japan). Emphasis on race plans.

Video Start and Turn Analysis in a training environment



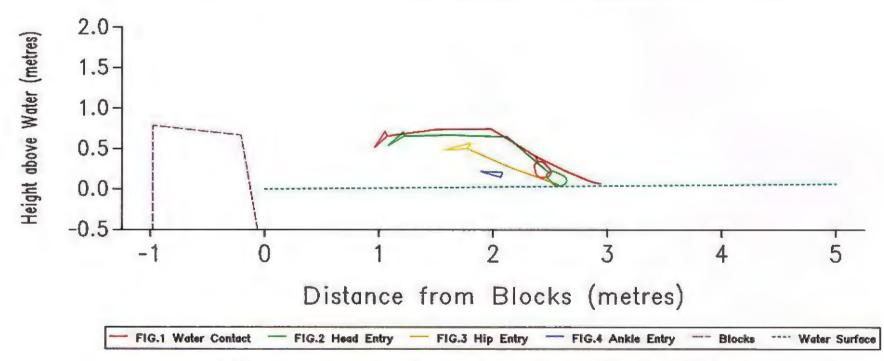
AUSTRALIAN INSTITUTE OF SPORT

07OCT93___TRIAL#Q1___N_STOEL

Left_Blocks_at_0.72sec___Hit_Water_at_1.04sec_=_2.94metres

Biomechanical Analysis - Swim Starts

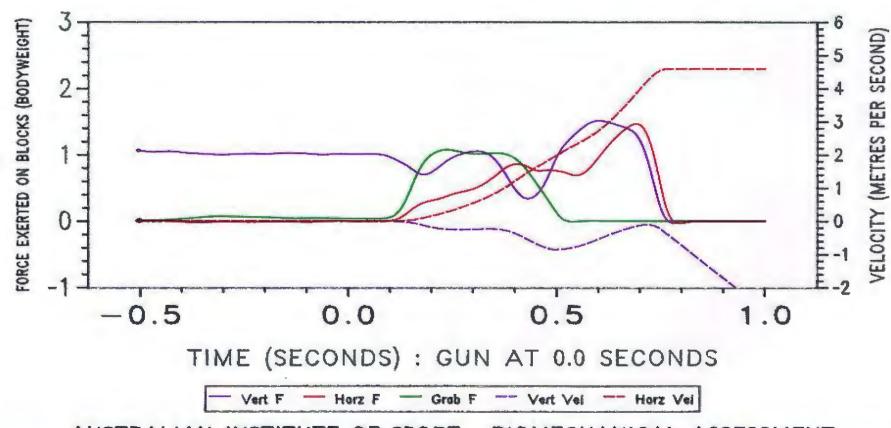
Trunk_Angle__Fig1=-42__Fig2=-7__Fig3=22__Fig4=-41_degrees



AUSTRALIAN INSTITUTE OF SPORT

07OCT93___TRIAL#Q1___N_STOEL

Left_Blocks_at_0.72sec___Hit_Water_at_1.04sec_=_2.94metres


Biomechanical Analysis - Swim Starts

Trunk_Angle-Head_Entry=-50_deg___Fing-Ank_Entry_Disp=88_cms

SWIMMING STARTS - FORCE PLATE ANALYSIS START_25MAR97_KLIMM_K1

AUSTRALIAN INSTITUTE OF SPORT - BIOMECHANICAL ASSESSMENT

Biomechanical Start Block Analysis

Athlete ID = Michael KLIM Freestyle k1

Reason = AIS

Date = 25 March 1997

Register	Value		Name
1	-0.43	(m/s)	Vertical Velocity at Takeoff
2	4.59	(m/s)	Horizontal Velocity at Takeoff
3	0.77	(sec)	Time on Blocks: Gun to Takeoff
4	-5.36	(deg)	Dive Angle at moment of Takeoff
5	5.94	(m/s/s)	Average Acceleration on Block

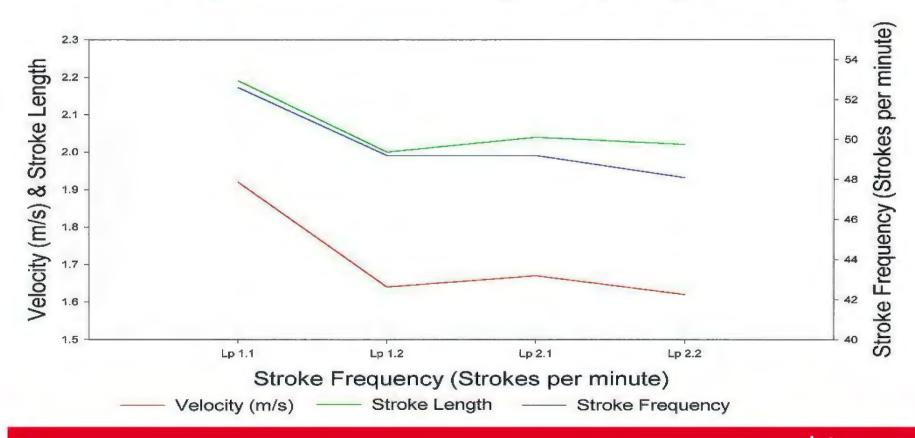
The MAD Active Drag Analysis System

www.ausport.gov.au

Large Competition Race Analysis System

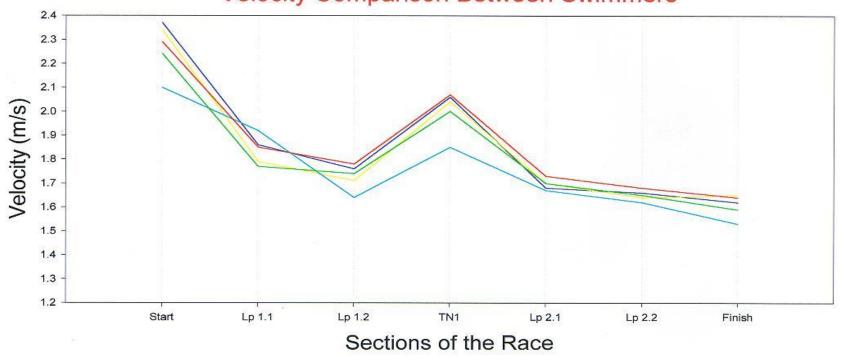
BIOMECHANICS - COMPETITION ANALYSIS IN SWIMMING

```
Date = 3rd May 2000 Official Timing by OMEGA Competition Meet = Australian Olympic Trials - Sydney - 2000
 Swimmer = Alex POPOV
                                State = Russia
                                                                             Club = AIS
Style = Free Style Age/Open = Open
Distance = 100 metres
                                                               Gender = Mens
 Event : A Final
                                                   Lane Number: 5
 Time of Swim = 0:49.87 Min: Sec Finish Place in A Final = 1st-EO
 Computer File for Data Storage = popova m100fre afinal 23apr00.CMP
LAP # 1
                                                          Start Analysis
Off Block
 FIRST 25 METRES
Start time-Gun to 15m out= 6.00 sec
                                                                               (Vel= 2.50m/s)
Stroke Length = 2.45 metres
Stroke Frequency = 48.4 Strokes/Min
                                                             0.760sec
= 1.240 sec/stroke
Interval Velocity= 1.97 metres/sec
Int INDEX SL*vel = 4.82 metres*metres/sec
                                                                               (Vel = 1.97m/s)
Progressive 25m Split
                                = 11.07 sec
Timé for this 25m^2 Split = 11.07 sec
                                                                               (Vel = 2.26m/s)
LAST 25 METRES
Stroke Length = 2.84 metres
Stroke Frequency = 39.5 Strokes/Min
Stroke Length
= 1.520 sec/stroke
Interval Velocity= 1.87 metres/sec
Int INDEX SL*vel = 5.29 metres*metres/sec
                                                                             (Vel= 1.87m/s)
Progressive 50m lap time = 24.68 sec
Time for this 50m lap = 24.68 sec
Time for this 25m Split = 13.61 sec
                                                                               (Vel= 2.03m/s)
                                                                               (Vel= 1.84m/s)
LAP # 2
                                                           Turn Analysis
FIRST 25 METRES
                                                           IN = 4.23 \text{sec}
Turn time 7.5m to 7.5m =
                                           7.40 sec
                                                                              (Vel = 2.03m/s)
Stroke Length = 2.68 metres
Stroke Frequency = 43.5 Strokes/Min
= 1.380 sec/stroke
                                                           OUT= 3.17sec
                                                        IN/(IN+OUT) = 57.2%
Interval Velocity= 1.94 metres/sec
                                                                              (Vel= 1.94m/s)
Int INDEX SL*vel = 5.19 metres*metres/sec
Progressive 25m Split = 36.87 sec
Time for this 25m^2 Split = 12.19 sec
                                                                              (Vel= 2.05m/s)
LAST 25 METRES
Stroke Length = 2.64 metres
Stroke Frequency = 42.9 Strokes/Min
                       = 1.400 sec/stroke
Interval Velocity= 1.89 metres/sec
Interval velocity= 1.89 metres/sec
Int INDEX SL*vel = 4.97 metres*metres/sec
Finish Time (from 5m out)= 2.39 sec
Progressive 50m lap time = 49.87 sec
Time for this 50m lap = 25.19 sec
Time for this 25m Split = 13.00 sec
                                                                              (Vel = 1.89 m/s)
                                                                              (Vel = 1.88m/s)
                                                                              (Vel= 1.98m/s)
(Vel= 1.92m/s)
```


Australian Olympic Trials Sydney-AUSTRALIA A Final BIOMECHANICAL ANALYSIS						May-2000 Australian Format				Pg 1 of 1 Official Timing by OMEGA						
100 metres		Backstroke		Open Mens		15th May 2000		A.I.S. Biomechanical Analysis for Australian Swimming				2012/2012/2012/2012				
Matt WELSH		Josh WATSON		Ray HASS		Ross POWELLS	S	Robert WYLLIE		Robert VAN DEI	R ZANT	Cameron DELA	NEY	Adrian RADLEY	Y	
Victoria		N.S.W.		Victoria		Queensland		West.Aust.		Queensland		N.S.W.		Victoria		
Lane #	4	Lane #	5	Lane #	6	Lane #	3	Lane #	1	Lane #	2	Lane #	7	Lane #	8	
25m Lap#	1	25m Lap#	1	25m Lap#	1	25m Lap#	1	25m Lap#	1	25m Lap#	1	25m Lap#	1	25m Lap#	1	
StartTime15m	6.33	StartTime15m	6.42	StartTime15m	7.10	StartTime15m	6.93	StartTime15m	6.89	StartTime15m	7.17	StartTime15m	7.14	StartTime15m	6.78	
StrkeLeng(m)	2.01	StrkeLeng(m)	1.96	StrkeLeng(m)	2.19	StrkeLeng(m)	2.17	StrkeLeng(m)	2.09	StrkeLeng(m)	2.06	StrkeLeng(m)	2.19	StrkeLeng(m)	2.09	
StkFreq(S/m)	55.6	StkFreq(S/m)	54.5	StkFreq(S/m)	51.7	StkFreq(S/m)	50.0	StkFreq(S/m)	53.6	StkFreq(S/m)	51.7	StkFreq(S/m)	52.6	StkFreq(S/m)	51.7	
Velocty(m/s)	1.86	Velocty(m/s)	1.79	Velocty(m/s)	1.89	Velocty(m/s)	1.81	Velocty(m/s)	1.86	Velocty(m/s)	1.78	Velocty(m/s)	1.92	Velocty(m/s)	1.80	
Index(m*m/s)	3.75	Index(m*m/s)	3.51	Index(m*m/s)	4.13	Index(m*m/s)	3.92	Index(m*m/s)	3.88	Index(m*m/s)	3.66	Index(m*m/s)	4.22	Index(m*m/s)	3.75	
25m Split(s)	11.70	25m Split(s)	12.02	25m Split(s)	12.40	25m Split(s)	12.46	25m Split(s)	12.26	25m Split(s)	12.80	25m Split(s)	12.34	25m Split(s)	12.34	
50m Lap#	1	50m Lap#	1	50m Lap#	1	50m Lap#	1	50m Lap#	1	50m Lap#	1	50m Lap#	1	50m Lap#	1	
StrkeLeng(m)	1.99	StrkeLeng(m)	1.97	StrkeLeng(m)	2.03	StrkeLeng(m)	2.16	StrkeLeng(m)	2.01	StrkeLeng(m)	2.13	StrkeLeng(m)	2.00	StrkeLeng(m)	2.01	
StkFreq(S/m)	52.9	StkFreq(S/m)	52.2	StkFreq(S/m)	52.1	StkFreq(S/m)	48.4	StkFreq(S/m)	50.3	StkFreq(S/m)	48.1	StkFreq(S/m)	49.2	StkFreq(S/m)	50.7	
Velocty(m/s)	1.76	Velocty(m/s)	1.71	Velocty(m/s)	1.77	Velocty(m/s)	1.74	Velocty(m/s)	1.68	Velocty(m/s)	1.71	Velocty(m/s)	1.64	Velocty(m/s)	1.69	
Index(m*m/s)	3.51	Index(m*m/s)	3.38	Index(m*m/s)	3.59	Index(m*m/s)	3.77	Index(m*m/s)	3.39	Index(m*m/s)	3.64	Index(m*m/s)	3.29	Index(m*m/s)	3.40	
25m Split(s)	14.37	25m Split(s)	14.62	25m Split(s)	14.41	25m Split(s)	14.55	25m Split(s)	14.82	25m Split(s)	14.70	25m Split(s)	15.21	25m Split(s)	14.80	
Lap Time(s)	26.07	Lap Time(s)	26.64	Lap Time(s)	26.81	Lap Time(s)	27.01	Lap Time(s)	27.08	Lap Time(s)	27.50	Lap Time(s)	27.55	Lap Time(s)	27.14	
25m Lap#	2	25m Lap#	2	25m Lap#	2	25m Lap#	2	25m Lap#	2	25m Lap#	2	25m Lap#	2	25m Lap#	2	
TurnTm 7.5*2	7.28	TurnTm 7.5*2	7.36	TurnTm 7.5*2	7.88	TurnTm 7.5*2	7.72	TurnTm 7.5*2	7.64	TurnTm 7.5*2	7.96	TurnTm 7.5*2	8.12	TurnTm 7.5*2	7.60	
StrkeLeng(m)	1.98	StrkeLeng(m)	1.97	StrkeLeng(m)	2.04	StrkeLeng(m)	2.20	StrkeLeng(m)	2.00	StrkeLeng(m)	2.08	StrkeLeng(m)	2.04	StrkeLeng(m)	1.99	
StkFreq(S/m)	51.1	StkFreq(S/m)	51.7	StkFreq(S/m)	49.6	StkFreq(S/m)	45.5	StkFreq(S/m)	50.4	StkFreq(S/m)	47.5	StkFreq(S/m)	49.2	StkFreg(S/m)	50.0	
Velocty(m/s)	1.68	Velocty(m/s)	1.70	Velocty(m/s)	1.68	Velocty(m/s)	1.67	Velocty(m/s)	1.68	Velocty(m/s)	1.65	Velocty(m/s)	1.67	Velocty(m/s)	1.66	
Index(m*m/s)	3.33	Index(m*m/s)	3.34	Index(m*m/s)	3.43	Index(m*m/s)	3.67	Index(m*m/s)	3.38	Index(m*m/s)	3.43	Index(m*m/s)	3.41	Index(m*m/s)	3.30	
25m Split(s)	13.25	25m Split(s)	13.26	25m Split(s)	13.77	25m Split(s)	13.69	25m Split(s)	13.60	25m Split(s)	14.10	25m Split(s)	14.03	25m Split(s)	13.68	
50m Lap#	2	50m Lap#	2	50m Lap#	2	50m Lap#	2	50m Lap#	2	50m Lap#	2	50m Lap#	2	50m Lap#	2	
StrkeLeng(m)	1.96	StrkeLeng(m)	1.88	StrkeLeng(m)	1.99	StrkeLeng(m)	2.13	StrkeLeng(m)	1.95	StrkeLeng(m)	2.04	StrkeLeng(m)	2.02	StrkeLeng(m)	2.00	
StkFreq(S/m)	50.8	StkFreq(S/m)	52.3	StkFreq(S/m)	48.9	StkFreq(S/m)	44.6	StkFreq(S/m)	48.4	StkFreq(S/m)	48.6	StkFreq(S/m)	48.1	StkFreq(S/m)	45.7	
Velocty(m/s)	1.66	Velocty(m/s)	1.64	Velocty(m/s)	1.62	Velocty(m/s)	1.58	Velocty(m/s)	1.57	Velocty(m/s)	1.65	Velocty(m/s)	1.62	Velocty(m/s)	1.52	
Index(m*m/s)	3.25	Index(m*m/s)	3.08	Index(m*m/s)	3.23	Index(m*m/s)	3.36	Index(m*m/s)	3.06	Index(m*m/s)	3.38	Index(m*m/s)	3.29	Index(m*m/s)	3.05	
FinTime(5m)	2.77	FinTime(5m)	2.72	FinTime(5m)	2.92	FinTime(5m)	2.93	FinTime(5m)	3.04	FinTime(5m)	2.91	FinTime(5m)	2.94	FinTime(5m)	3.08	
25m Splt(s)	14.82	25m Splt(s)	14.92	25m Splt(s)	15.24	25m Splt(s)	15.60	25m Splt(s)	15.77	25m Splt(s)	15.00	25m Splt(s)	15.26	25m Splt(s)	16.20	
Lap Time(s)	28.07	Lap Time(s)	28.18	Lap Time(s)	29.01	Lap Time(s)	29.29	Lap Time(s)	29.37	Lap Time(s)	29.10	Lap Time(s)	29.29	Lap Time(s)	29.88	
Resit(m:s.s)	0:54.14	Resit(m:s.s)	0:54.82	Resit(m:s.s)	0:55.82	Resit(m:s.s)	0:56.30	Reslt(m:s.s)	0:56.45	Reslt(m:s.s)	0:56.60	Resit(m:s.s)	0:56.84	Resit(m:s.s)	0:57.02	
Place	1st	Place	2nd	Place	3rd	Place	4th	Place	5th	Place	6th	Place	7th	Place	8th	
AvSwimVelcy	1.72	AvSwimVelcy	1.70	AvSwimVelcy	1.72	AvSwimVelcy	1.68	AvSwimVelcy	1.67	AvSwimVelcy	1.69	AvSwimVelcy	1.69	AvSwimVelcy	1.65	
AvStrokeFreq	52.2	AvStrokeFreq	52.5	AvStrokeFreq	50.4	AvStrokeFreq	46.7	AvStrokeFreq	50.3	AvStrokeFreq	48.6	AvStrokeFreq	49.4	AvStrokeFreq	49.1	
AvStrokeLeng	1.98	AvStrokeLeng	1.94	AvStrokeLeng		AvStrokeLeng	2.16	AvStrokeLeng	2.00	AvStrokeLeng	2.08	AvStrokeLeng	2.05	AvStrokeLeng	2.01	
Av Index	3.42	Av Index	3.30	Av Index	3.52	Av Index	3.64	Av Index	3.36	Av Index	3.51	Av Index	3.47	Av Index	3.32	
StartTm(sec)	6.33	StartTm(sec)	6.42	StartTm(sec)	7.10	StartTm(sec)	6.93	StartTm(sec)	6.89	StartTm(sec)	7.17	StartTm(sec)	7.14	StartTm(sec)	6.78	
Turn Tm(adj)	7.28	Turn Tm(adj)	7.36	Turn Tm(adj)	7.88	Turn Tm(adj)	7.72	Turn Tm(adj)	7.64	Turn Tm(adj)	7.96	Turn Tm(adj)	8.12	Turn Tm(adj)	7.60	
Fin. Tm(adj)	2.77	Fin. Tm(adj)	2.72	Fin. Tm(adj)	2.92	Fin. Tm(adj)	2.93	Fin. Tm(adj)	3.04	Fin. Tm(adj)	2.91	Fin. Tm(adj)	2.94	Fin. Tm(adj)	3.08	
Free Swim Tm		Free Swim Tm		Free Swim Tm		Free Swim Tm		Free Swim Tm		Free Swim Tm	38.58	Free Swim Tm		Free Swim Tm		
Accounted Tm		Accounted Tm		Accounted Tm		Accounted Tm		Accounted Tm		Accounted Tm		Accounted Tm		Accounted Tm		

Australian Institute of Sport - Competition Swim Analysis Australian Olympic Trials - May 2000

Mens Open 100m Backstroke - Final - Cameron DELANEY (7th)
Relationship Between Stroke Length/Frequency and Velocity

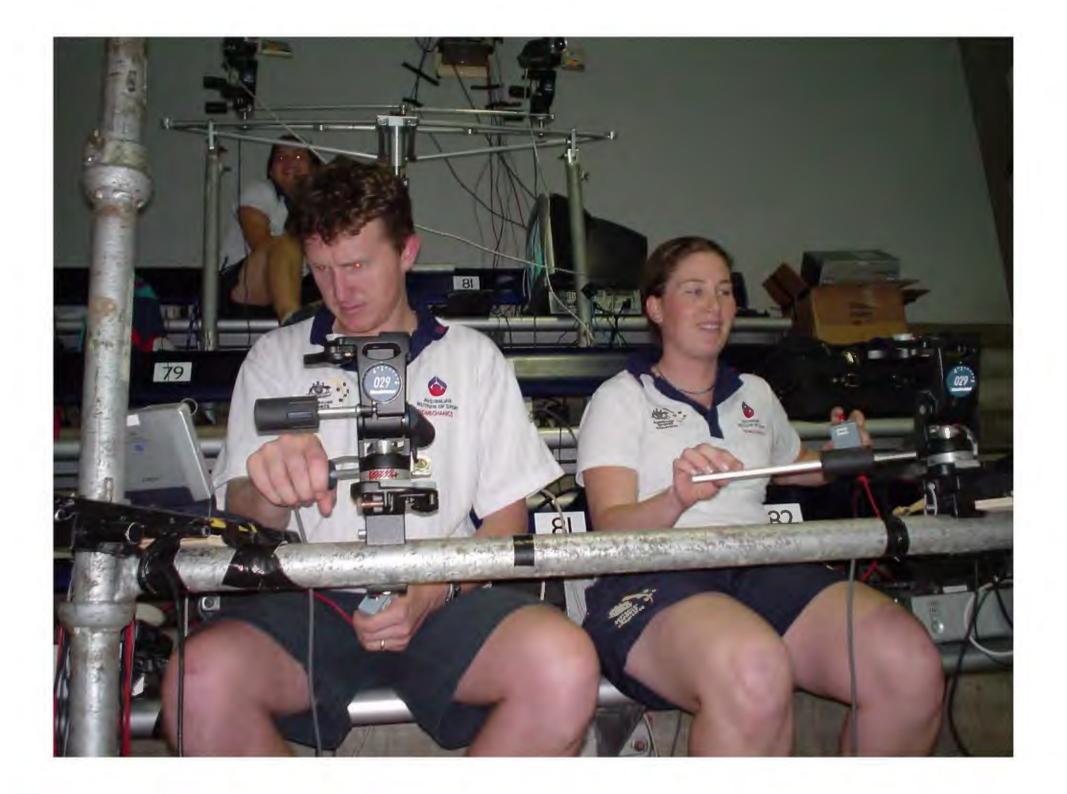


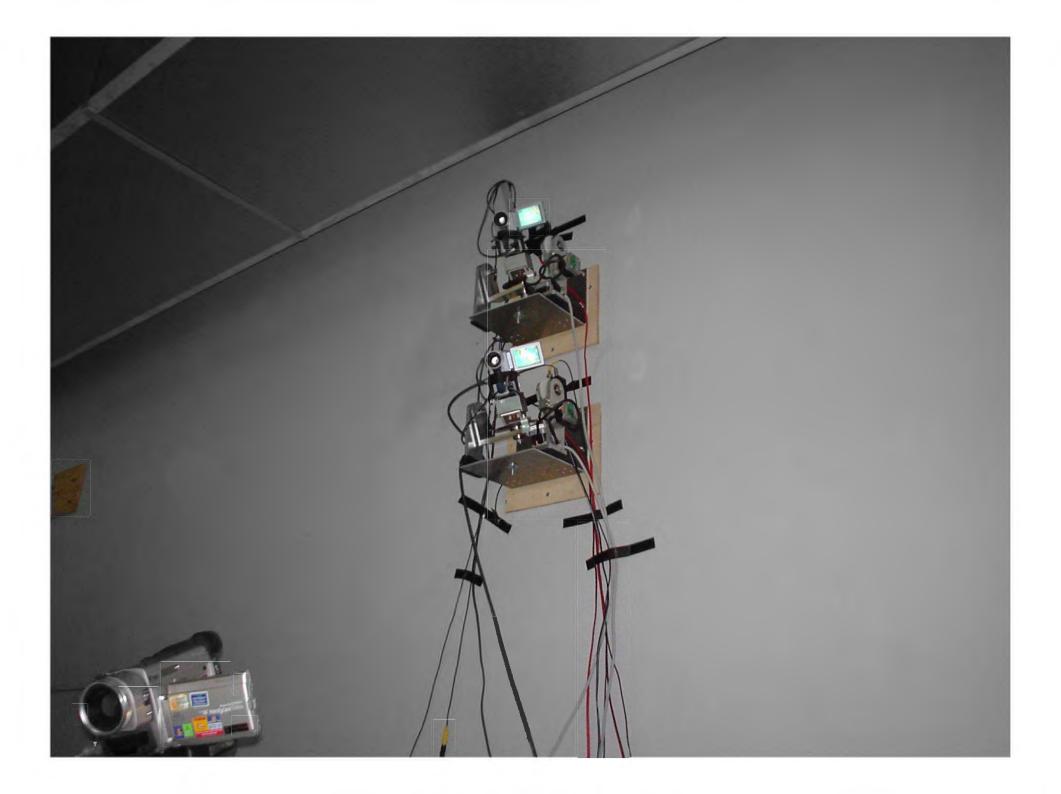
Australian Institute of Sport - Competition Analysis Australian Olympic Trials - May 2000

Mens Open 100m Backstroke - Final - Cameron DELANEY (7th)

Velocity Comparison Between Swimmers

M Welsh (1st) — J Watson (2nd) — C Delaney (7th) — PanPacs Champ99 — Av PanPacs Final99


Early to mid 1990's


- " Evaluation of Active Drag and Propulsion.
- " Competition Analysis provide additional information such as Stroke Lengths and Stroke Rates to refine race plans.
- " Portable race analysis systems evolved."
- Refinement of Start and Turn Analysis systems in a training environment. More objective data.

SWAN Portable Analysis System

Portable Competition Analysis System

Swan Portable Competition Analysis

Short Course Mens100m Backstroke WR

Swan Portable Competition Analysis

Long Course Womens 100m Freestyle WR

The Late 1990's

- "Interactive Software to diagnose inefficiencies in swimmer's technique.
- "Active and Passive Drag evaluated. VPM active drag analysis evolved. Pressure across hand.
- Coordination of Swimming actions to investigate reduction of intra stroke velocity variations.
- " More sophisticated Start and Turn Analysis systems evolved.

Pressure Across the Hand

Measuring Pressure Differences across the hand

More Complex Start and Turn Analysis Systems Used

SWAN Analysis System

Swan Start Analysis

AUSTRALIAN INSTITUTE OF SPORT BIOMECHANICS - START COMPARISON - FINAL REPORT

Page 1

Ian THORPE 6/6/00 - Average of 2 trials
Olympic Orientation Camp - June 2000 - caloundra
Computer File for Data Storage = A:\OLYO2\ITFR02S.TXT

Phase	Event	Prog. Time	Interval Time	Prog. Distance	Interval Distance	Progr. Velocity	Interval Velocity	
	Gun	0.00		0.01				
Initiation	,		0.88		1.93		2.20	
	Leave Blocks	0.88		1.95		2.21		
Flight			0.34		1.99		5.94	-13
	Entry	1.22		3.94		3.24		
Underwater			3.13		7.24		2.31	
	Resurface	4.35		11.17		2.57		
Free Swim			2.09		3.83		1.84	
	15m	6.43		15.00		2.33		

	Swimmer	Comparison	Comment
Total Time	6.43	6.95	much shorter than average
Initiation Interval Time	0.88	0.87	average
Flight Interval Time	0.34	0.58	much shorter than average
Underwater Interval Time	3.13	3.32	average
Dist at Entry	3.94	3.15	much further than average
Dist at Resurface	11.17	0.00	much further than average
Av Velocity Overall	2.33	2.16	much faster than average
Flight Velocity	5.94	3.03	much faster than average
Underwater Velocity	2.31	2.22	average
Free Swim Velocity	1.84	1.57	much faster than average
World Times Comparison			
Start Time to 15m	6.43	7.09	much shorter than average
Comparison file A:\COMPARE\	MSTART.TXT		

Combined Camp Data '98 - Men's 400m Fre Starts Kowalski Thorpe Hackett

SWAN Analysis System

SWAN Turn Analysis Above Water

SWAN TURN analysis Below Water

AUSTRALIAN INSTITUTE OF SPORT BIOMECHANICS - TURN COMPARISON - FINAL REPORT

Page 1

lan THORPE 6/6/00 - Average of 2 trials
Freestyle, Height 1.96 metres
Olympic Orientation Camp - June 2000
Computer File for Data Storage = A:\OLYO2\ITFR01T.TXT

Kowalski Thorpe

	Event	Prog. Time	Interval Time	Prog Distance		Progr. Velocity	Interval Velocity	Strokes
	7.5m	0.00		-7.50				
Pre Rotation			3.64		6.78	_	1.86	1.00
	Start Turn	3.64		-0.72	2	1.86		
Rotation			0.71		1.22		1.71	
	Touch Board	4.36		0.50)	1.84		
Pushoff			0.41		1.46		3.56	
	Leave Board	4.76		1.96	5	1.99		
Jnderwater			2.91		6.04		2.08	
	Breakout	7.67		8.00)	2.02		
Post Breakout			-0.20		-0.50			0.00
	7.5m	7.47		7.50	•	2.01		
n Turn Time Out Turn Time n/(ln+Out)%	4.36 3.11 58.3%				Pre Turn Swi Post Turn Sw		1.83 1.74	
Fotal Time Rotation Interval Pushoff Interval Underwater Inter Dist at Start of Tourist at Breakou Av Velocity Ove Pre Rotation Vel Pushoff Velocity Underwater Vel World Times Co	Time Erval Time Furn trail Plocity ocity	Swimme 7.47 0.71 0.41 2.91 -0.72 8.00 2.01 1.86 3.56 2.08	8 0 0 1 2 5 1 1 3	parison .03 .70 .40 .96 1.16 .83 .88 .88 .58	much less tha	than average an average than average verage han average		
n Turn Time Out Turn Time Overall Time	A:\COMPARE\M. Combined Cam		3 7 XT	.64 .46 .94 Tre Turns	much shorter	than average than average than average	•	-

Late 1990's continued

- "Breathing, body position and undulating movements examined with respect to swimming efficiency.
- Effect of body roll on arm movement and swimming speed.
- " Examination of relationship between SL & SR.
 When does SL drop off in races.
- Evaluation of suits for particular swimmers & which suit was better in particular events.

Early to Mid 2000's

- "Starts and Turn analysis in reference to type of Start. Grab Start versus Track Start.
- "Starts evaluated from Gun to 15m.
- Turns evaluated from 5m way in to contact to 10m way out.
- "Instrumentation to monitor intra stroke Velocity variations.
- " Effectiveness of suits for particular swimmers.
- " Manual Kinematic Analysis of Swimming.

Kinematic Analysis

3D swimming Model

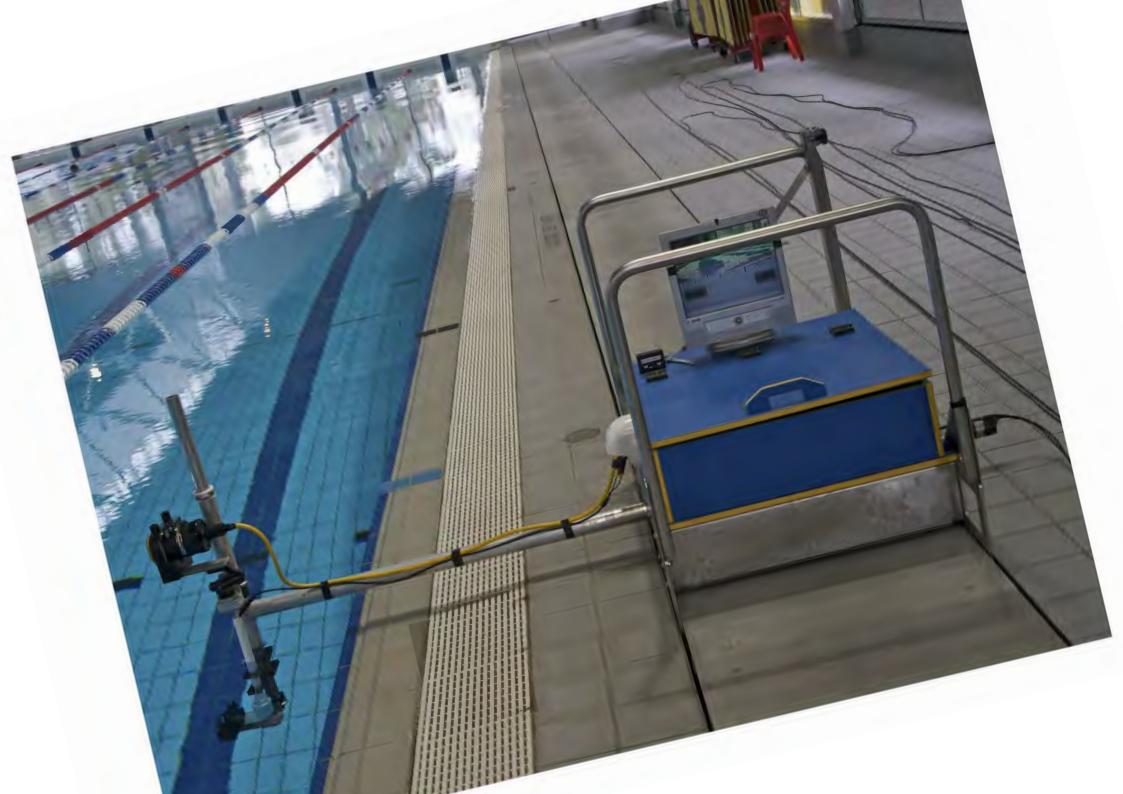
Mid to Late 2000's

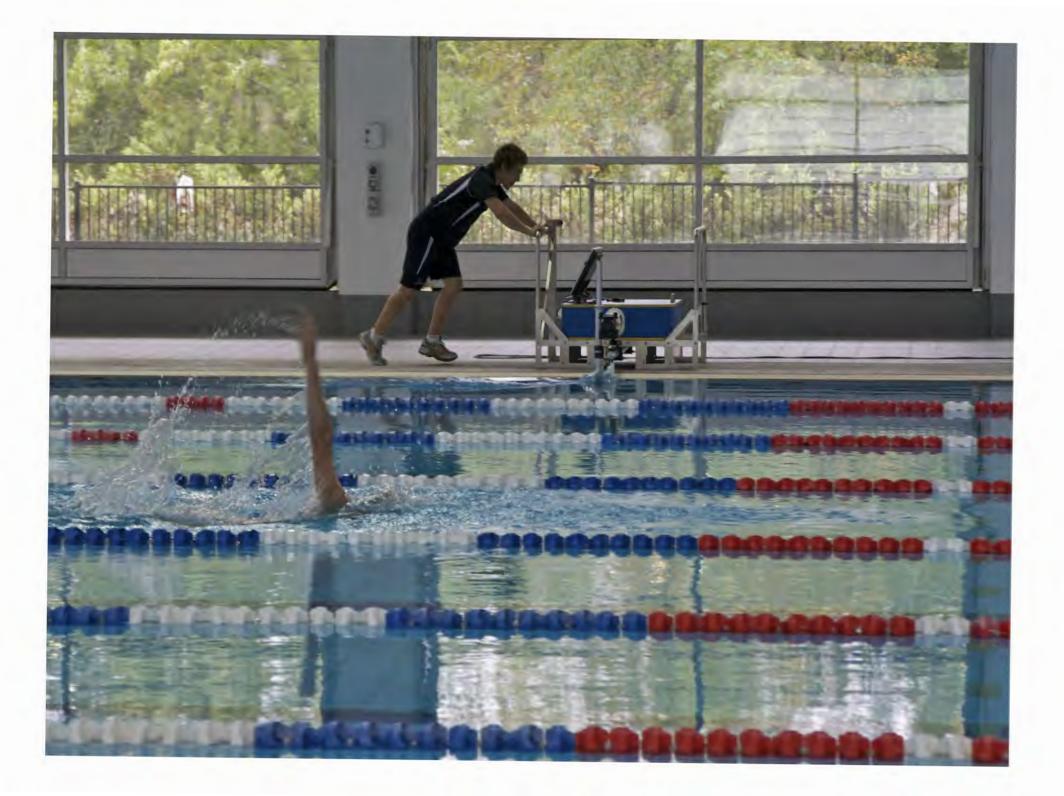
- "Investigation of suits for particular swimmers.
- Speedo LZR using compression and reduced seams to out performed other suits in Beijing Olympics.
- Other suit manufacturers used non porous materials to trap air for performance. Service providers worked with suit manufacturers.
- "Restrictions by FINA on suit manufacture.

Working with Swim Suit Manufacturers

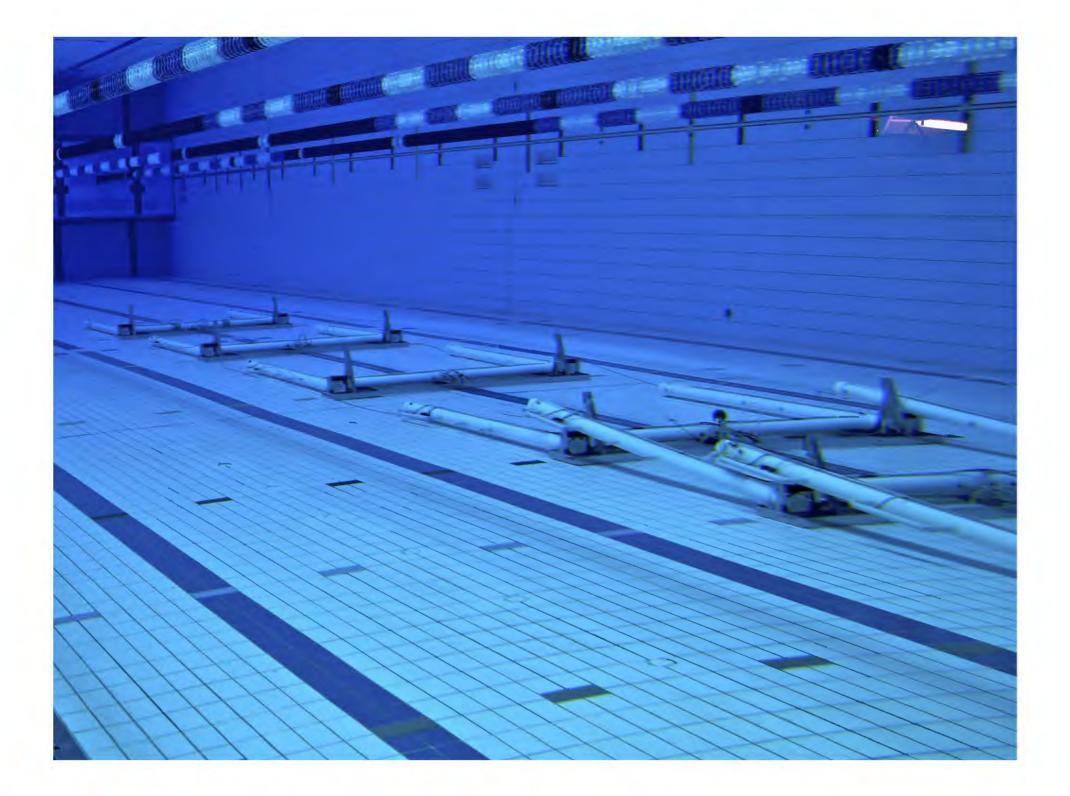
Mid to Late 2000's continued

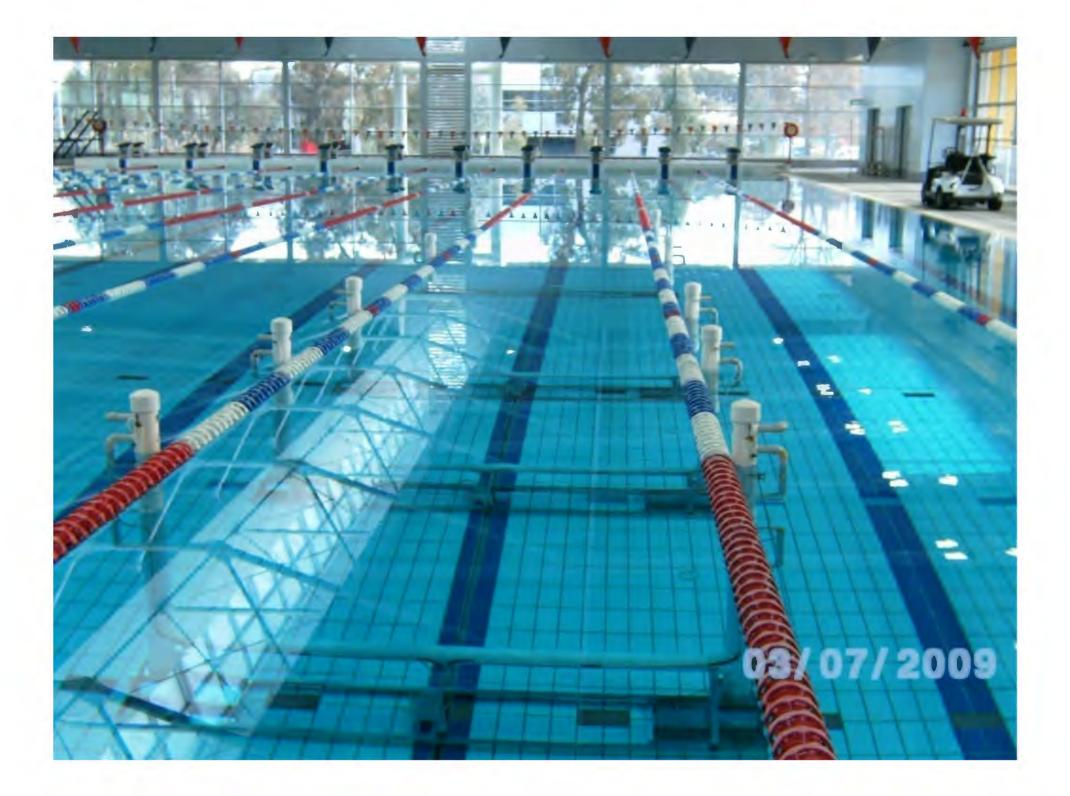
- New Technologies involved in monitoring swimmers
 miniaturisation of pressure sensors, gyroscopes
 and accelerometers allowed for quicker analyses.
- " Faster computers allowed immediate processing.
- Gig E cameras allowed higher speed better resolution images.
- Analysis Systems developed that took advantage of the above.
- " Competition analysis systems were automated.

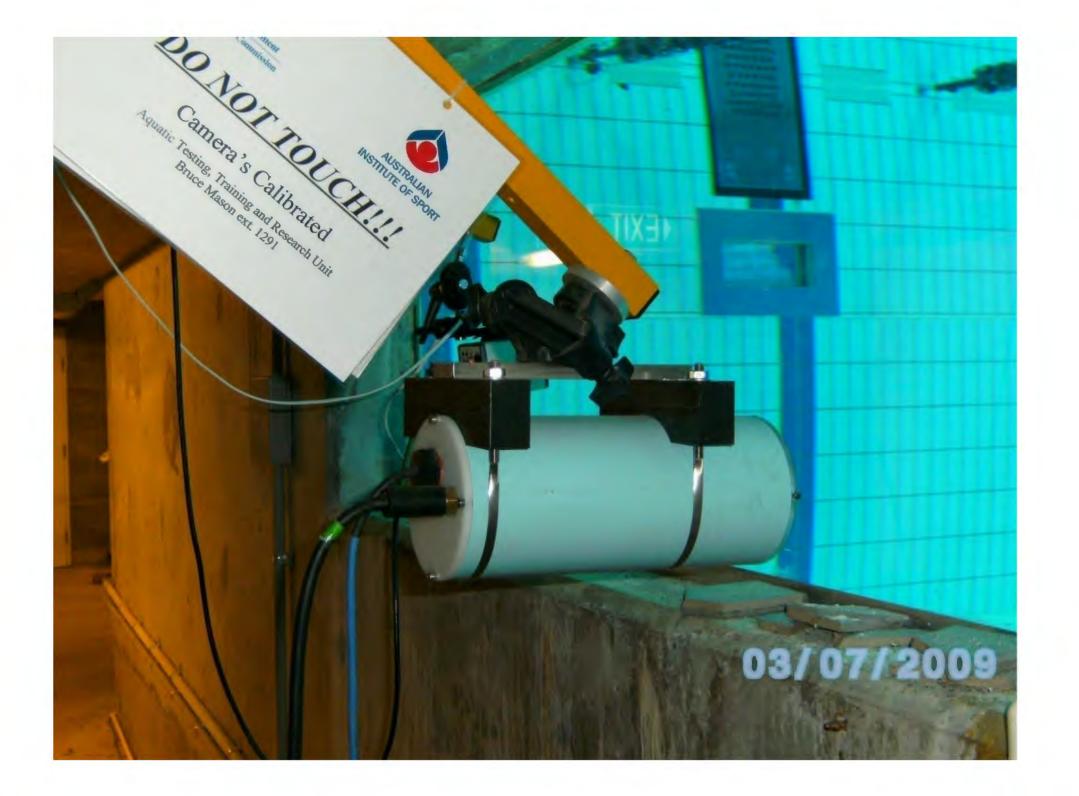


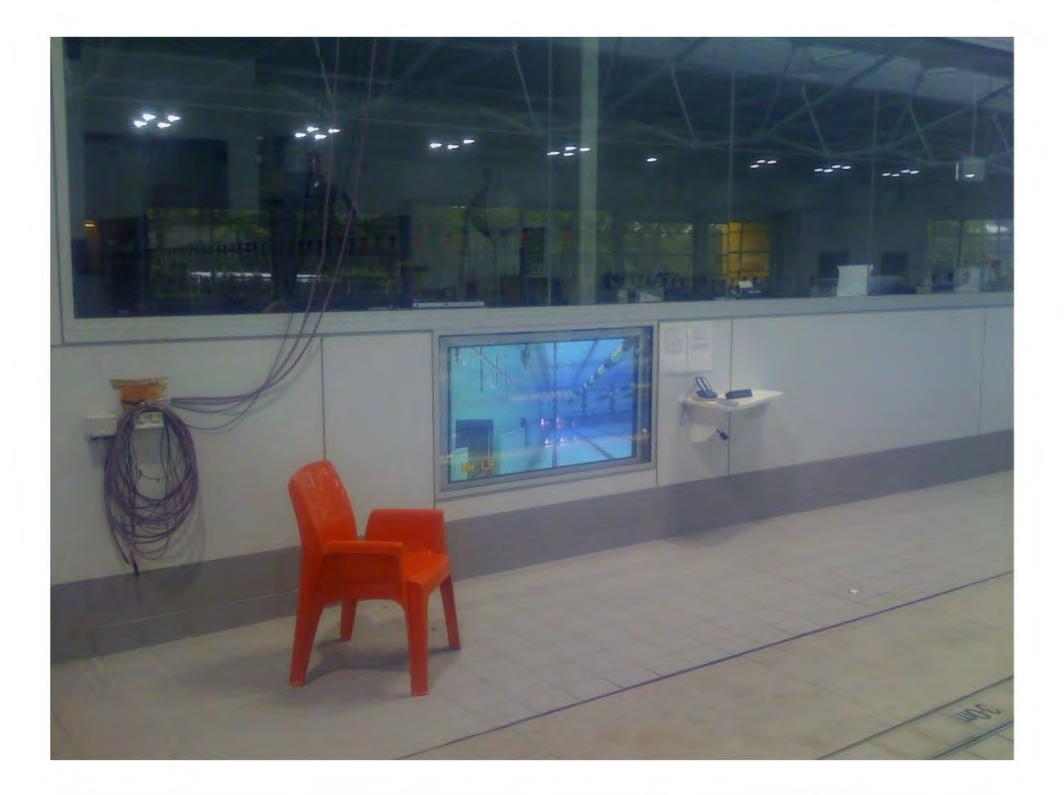


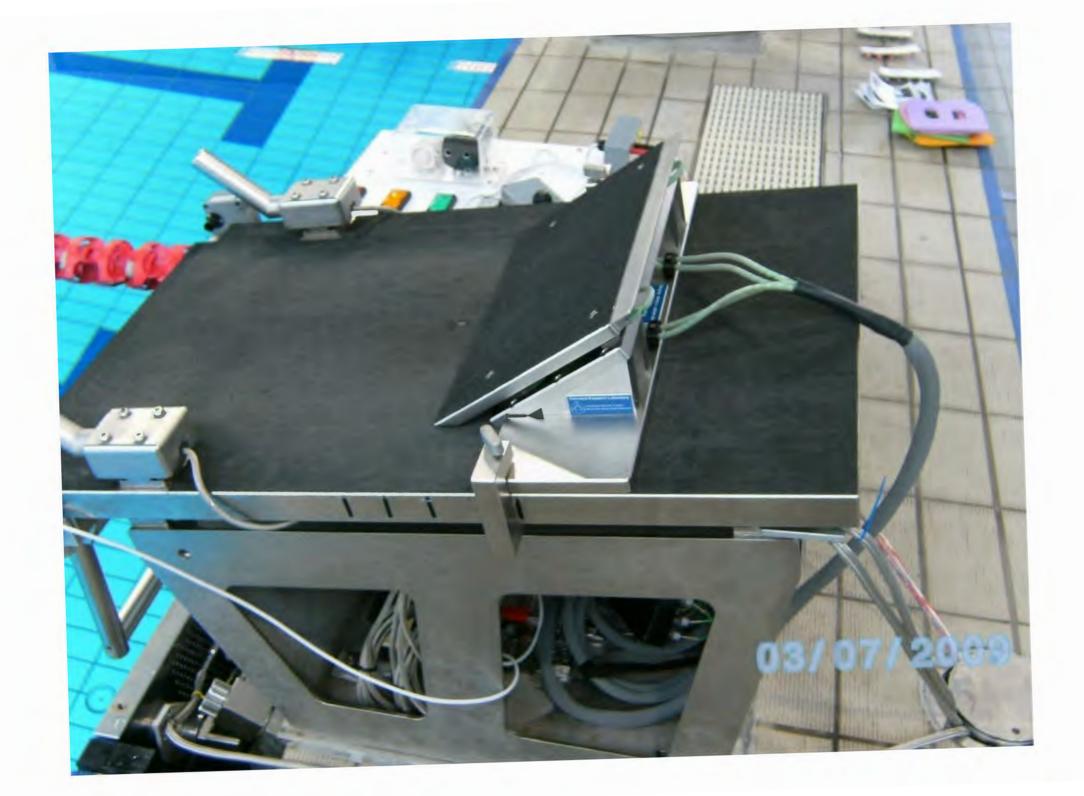
Mid to Late 2000's continued

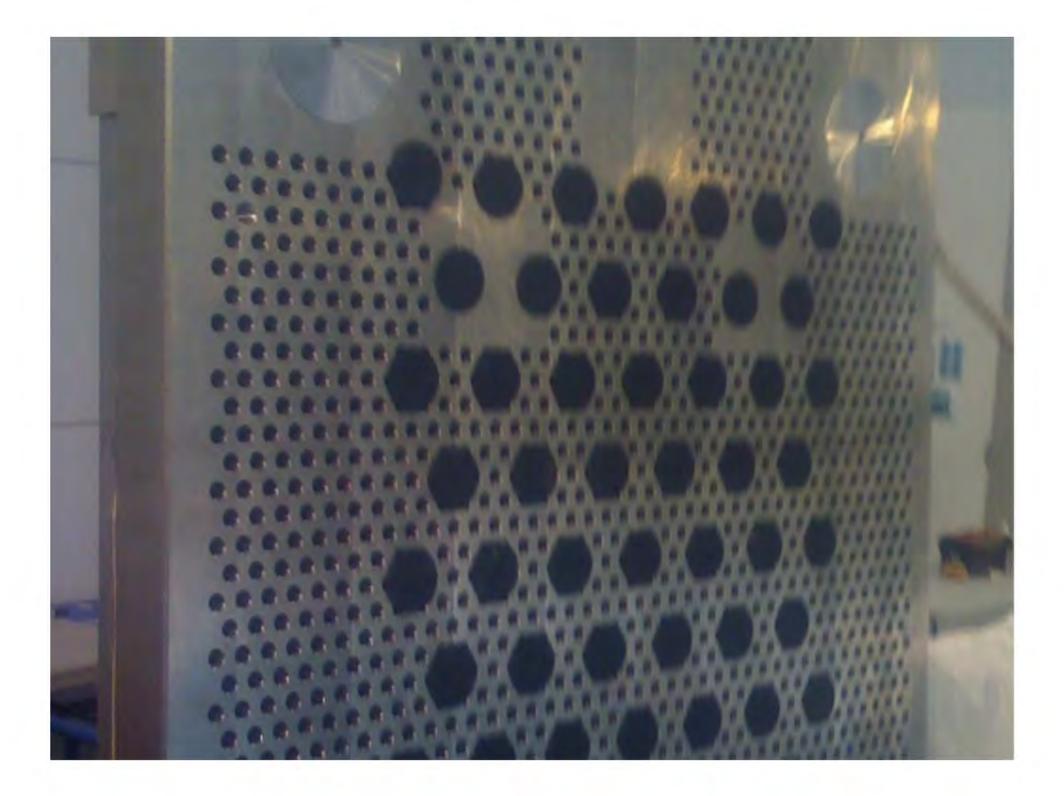

- Development of new facilities for servicing of swimmers.
- Development of new Equipment designed to service swimmers











2010 and Onwards

- Look at flow characteristics around the swimmer. Tuffs on body, dye flow patterns & particle image velocimetry.
- " Breathing in the stroke cycle.
- " Use of new FINA starting block.
- " Active Drag & the velocity profile of swimmers.
- " More comprehensive Starts and Turns analysis systems.
- " Computational Fluid Dynamics involved.

Service to Acquaint Swimmer with new start block

Active Drag and Propulsion

Feedback on Propulsion

Brendon Rickard Breaststroke

Active Drag Analysis

Effective use of drag analysis as a servicing tool. Swimmer reduces time over 400m Medley in Backstroke leg.

Tommy Fraser-Holmes July 2009 versus April 2010

New Start & Turn Analysis Systems that utilise new Technology

WETPLATE Start & Turn Analysis

Demonstration of Programme

Wetplate Analysis Start - Cam. Prossor.

Effective Use of Grab Bar in starting not just a push off.

Higher Velocity off Block 4.22m/s v 3.83m/s
Greater Power output
Quicker to 15m by 0.4 sec

<u>Start Analysis – Jessica Schipper.</u>

Effective Pull on Grab Bar to convert vertical force into horizontal force using body rotation.

Quicker off block 0.77s v 0.70s
Out slightly further to entry
Smaller entry hole

<u>Start Analysis – Eamon Sullivan</u>

Reduce size of entry hole in water following a start so as to retain high takeoff velocity.

Smaller entry hole 0.85m v 1.19m Out slightly further to entry Quicker to 15m 6.74s v 6.59s

<u>Start Analysis – Cam Prossor.</u>

Reducing Entry Hole Size

Initiating a slight pike and flexion at knees

Wetplate Analysis Start – Bailey V Murphy.

Use of horizontal rather than upward movement of arms to allow body to get out of the water in Backstroke Starts.

Smaller entry hole 0.74m v 2.17m Able to get further out of water

<u>Backstroke Start Analysis – Belinda Hocking Versus Ash Delaney</u>

Effective use of the Glide and Kick in Breaststroke starts.

Smaller entry hole 0.50m v 0.76m 15m time 8.19s v 8.24s No extra kicks – Streamline and no extra kicks

<u>Start Analysis – Tarnee White</u>

Grab versus Track Starting.

Same time off block
Velocity Grab=4.35m/s Track=4.24m/s
Distance Grab=2.99m Track=2.73
Dive Angle Grab=-4deg Track=-11deg

Start Analysis – Libby Trickett

Don't commence underwater kicking too early in starts.

Same time off block
Same velocity off block
Entry further out 2.54m v 2.41m
Smaller entry hole 0.68m v 1.06m

<u>Start Analysis – Alicia Coutts</u>

Stay Relaxed prior to Start Signal in race starts.

Travels out further 2.91m v 2.79m

Delays first kick 7.17m v 7.06m

Lesser Dive angle -4deg v -11deg

Start Analysis - Alice Mills

Change from Grab to Track Starting to accommodate the new start blocks.

Quicker off block Grab=0.91s Track=0.81s
Higher Velocity off block Grab=4.47m/s Track=4.65m/s
Time to 15m Grab=7.92s Track=7.56s

Start Analysis – Craig Calder

Little time on wall with powerful leg drive is important in turns.

Less time on wall 0.21s v 0.26s Less impulse off wall

Turn Analysis – Angie Bainbridge

Use of the step-in rather than arm-swing in Relay Changeover.

Quicker off block 0.01s v 0.17s

Quicker into water by 0.13s

Slower velocity off block 4.74m/s v 4.46m/s

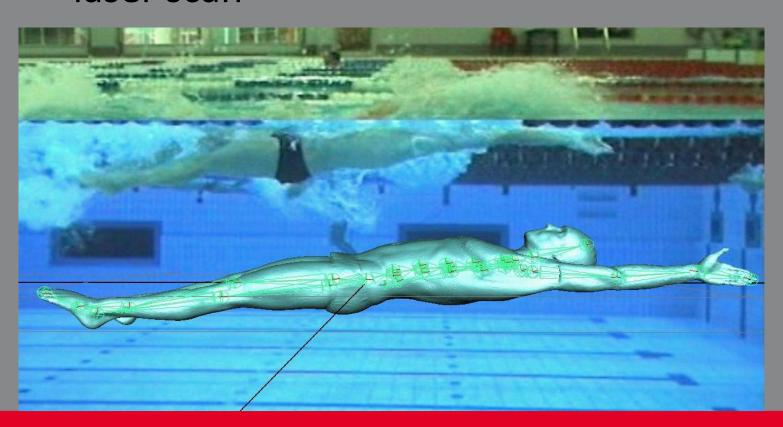
Relay Start Analysis – Matt Target.with Andrew Lautestein

Little time on wall with continuous push is important in turns.

Shorter time on Wall 0.27s v 0.32s Less impulse off wall

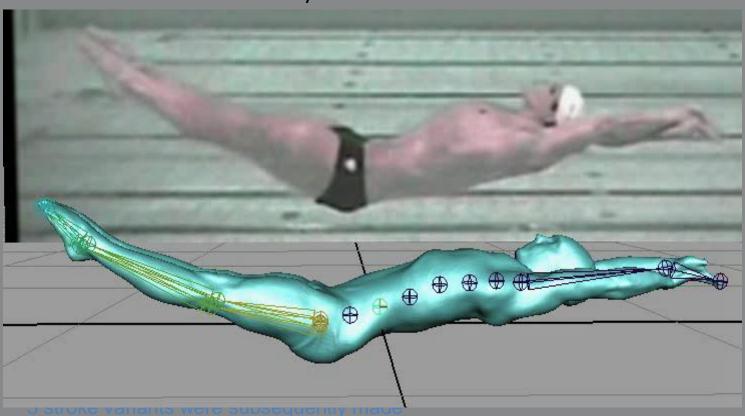
Turn Analysis – Felicity Galvez

Important Aspects of the Fly to Back Turn In the Individual Medley


Miss time the wall
Less time on wall from Hand Touch to Feet off 1.19s v 1.42s
Greater impulse off wall 3.57m/s v 3.48m/s
Better turn time 9.11s v 9.49s

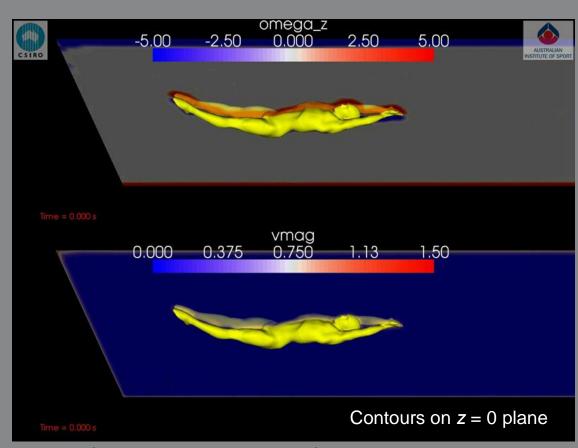
<u>Turn Analysis – Alicia Coutts Versus Stephanie Rice</u>

Now have matching individual footage & laser scan



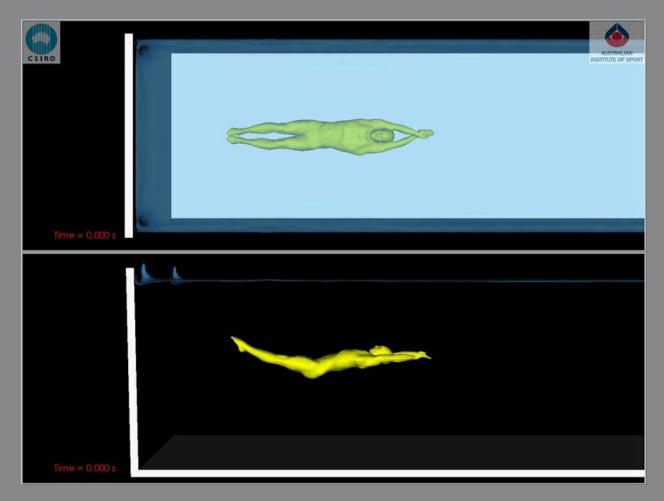
Submerged dolphin kick Rigging and animating the surface mesh

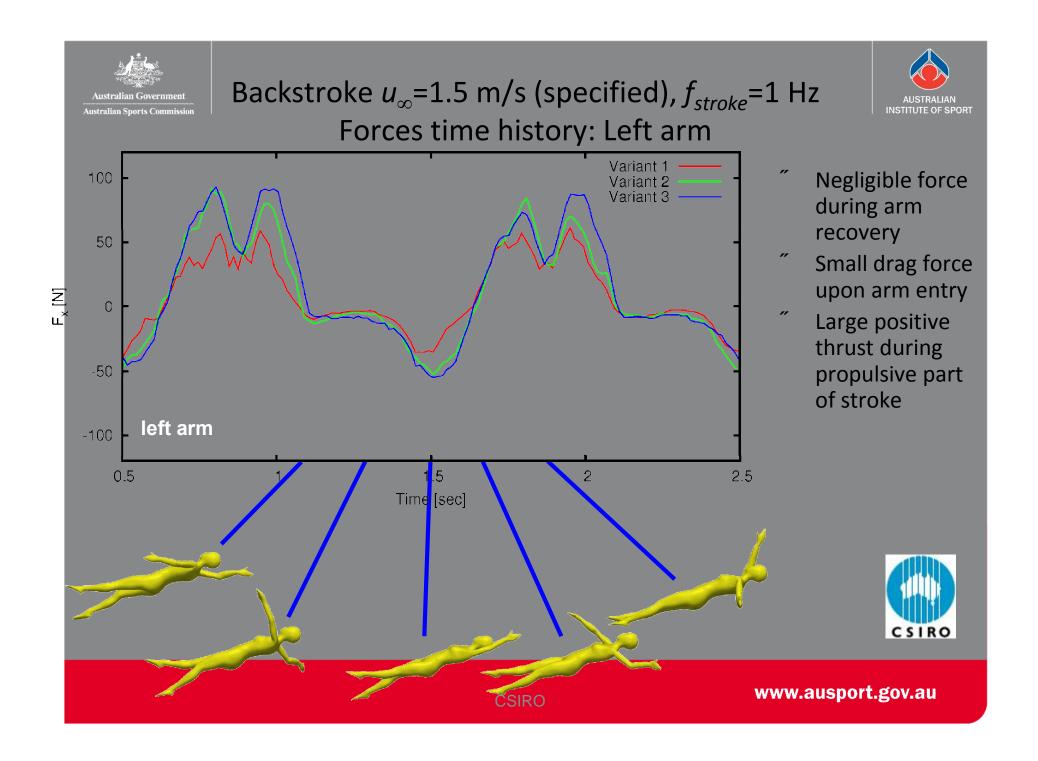
A single kicking period of footage was used as a reference for animating the surface mesh – side by side


Submerged dolphin kick

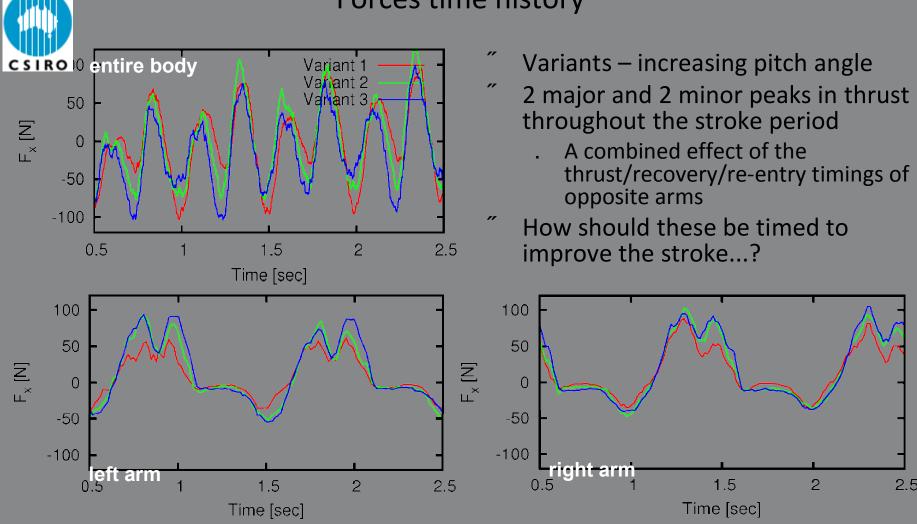
Spanwise vorticity

Velocity magnitude


- High speed / momentum fluid is generated strongest from extension kick
- Alternately signed vortical structures evident
- Forced vortex shedding interacts with natural shedding


AUSTRALIAN INSTITUTE OF SPORT

Submerged dolphin kick


" % xtension kick+generates vortex rings associated with major thrust generation

Backstroke u_{∞} =1.5 m/s (specified), f_{stroke} =1 Hz Forces time history

CFD in Start Analysis 1

CFD in Start Analysis 2

CFD in Turn Analysis 1

CFD in Turn Analysis 2

Thank you